时间:2020-01-04来源:系统城作者:电脑系统城
TensorFlow 生成 常量、序列和随机值
生成常量
tf.constant()这种形式比较常见,除了这一种生成常量的方式之外,像Numpy一样,TensorFlow也提供了生成集中特殊的常量的函数:
tf.zeros(shape, dtype=tf.float32, name=None)
三个参数的意思显而易见,返回指定形状的全零张量
tf.zeros_like(tensor, dtype=None, name=None, optimizer=True) 与函数的名字一致,传入一个张量,最后返回一个张量,与传入的张量拥有一样的形状和数据类型,也可以自己传入dtype指定数据类型
tf.ones() 和tf.ones_like()与之前的函数对应一致
tf.fill(shape, value, name=None) 返回填满指定输入的数值的张量,例如:
返回的张量就是:
生成序列
函数名称与Numpy中序列的函数一样,只是参数部分进行了简化,前两个参数分别指定了开始和结束的值,num指定了要生成的数量,最后则是名称,例如:
输出:
例如:
输出:
随机张量
随机值在TensorFlow中很重要,很多情况下的初始值往往会随机值,常用的随机值生成函数如下:
生成均匀分布的随机张量
生成服从正态分布的随机张量
生成服从截断正态分布的随机张量
这个函数与正态分布的函数使用时一样的,只是增加了 “截断” 也就是限制每个元素的取值,如果其平均值大于 2 个标准差的值将被丢弃并重新选择 。
以上这篇基于TensorFlow常量、序列以及随机值生成实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
2023-03-17
python flask项目打包成docker镜像发布的过程2023-03-17
python调试模块ipdb详解2023-03-17
python使用openai生成图像的超详细教程python cron定时任务触发接口自动化巡检 apscheduler报错:Run time of job …… next run at: ……)” was missed by misfire_grace_time参数 找到任务超时的根本原因...
2023-03-15